
 

“REVERSE” POWERSHELL 
MALWARE ANALYSIS 

 

 
  

APRIL 26, 2023 
MS CYBER OPERATIONS, COHORT #3 

Liam Powell 



 

Contents 
Methodology ................................................................................................................................................. 2 

Tools ........................................................................................................................................................... 2 

Analysis Process ......................................................................................................................................... 2 

Binary Overview ............................................................................................................................................. 3 

Attack Vector .............................................................................................................................................. 3 

File Analysis ................................................................................................................................................ 3 

Sandbox Analysis........................................................................................................................................ 4 

Overview Conclusions ................................................................................................................................ 4 

Static Analysis ................................................................................................................................................ 4 

PEStudio ..................................................................................................................................................... 4 

PeStudio ..................................................................................................................................................... 5 

GHIDRA ...................................................................................................................................................... 5 

Code Analysis ............................................................................................................................................. 5 

Code Analysis ............................................................................................................................................. 6 

Static Analysis Conclusions ........................................................................................................................ 6 

Dynamic Analysis ........................................................................................................................................... 6 

Process Monitor ......................................................................................................................................... 6 

Wireshark ................................................................................................................................................... 6 

Dynamic Analysis Conclusions ................................................................................................................... 7 

Conclusions .................................................................................................................................................... 7 

Indicators & Signatures .............................................................................................................................. 7 

Remediation Steps ..................................................................................................................................... 7 

Appendix ........................................................................................................................................................ 8 

 

  



Methodology 

Tools  
The analysis was carried out using a variety of dynamic and static analysis tools. This section details the 

tools and their purposes.  

Name Description Artifacts 

PEStudio PE file examination tool Binary details and properties 

GHIDRA Disassembly and reverse 
engineering tool 

Code disassembly and binary 
properties  

Process Monitor Process monitoring tool List of actions taken by binary 

Wireshark Network monitoring tool Malicious packets and data 
transfer 

Command-Line Tools File analysis  File descriptors and binary 
properties 

 

Analysis Process 
The primary goal of this analysis is to provide insight into the operation and observed behaviors of the 

malicious binary sample provided. The analysis follows several established methods, including a static 

and dynamic analysis process. All analysis steps take place in an isolated Virtual Machine running the 

FLARE framework and toolsets. Unless otherwise mentioned, the analysis environment has not been 

modified past the FLARE defaults. The Virtual Machine operating system is Windows 10.  

The analysis process is broadly outlined below. 

I. File Analysis  

a. Command-Line tools  

b. Sandbox Analysis 

II. Static Analysis  

a. PEStudio Analysis 

b. GHIDRA Disassembly Analysis 

c. Code Analysis 

III. Dynamic Analysis 

a. Process Monitor behavioral analysis. 

b. Wireshark network behavioral analysis. 

c. Registry artifact analysis. 

Certain aspects of the analysis have been tailored to the binary sample. These modifications are noted in 

the relevant sections.  

  



Binary Overview 

Attack Vector 
The executable is sent to victim devices through spoofed emails that include a download link hosted on a 

private server. The observed links have proven to be unique, and access to the server is limited to the 

victim during the attack process. Thus, the current belief is that the malware is a result of targeted 

phishing campaigns.  

File Analysis 
The binary was preliminarily examined via Linux command-line tools in an Ubuntu Windows Subsystem 

for Linux instance. The following information was gathered.  

Command Binary Name Executable Type Language 

file mssedge.exe PE32 Executable Mono/.Net assembly 

 

Command Hex Description 
binwalk 0x0 Microsoft executable, portable  

 0x1CA01  LZMA compressed data 

 

Command Value 

md5sum 3475003481c71d31e23beceb1e333298 

sha256sum 480f2f51b7c7a6bf25482cc8205d5b3c5e3d7e8661f9576628eab47d995e53bd 

 

Additionally, advanced string analysis tools were used. The full results are included in the report 

materials. A summary is presented below.  

• FLOSS results 

o 717 static strings 

o 661 ASCII strings 

o 56 UTF-16LE strings 

Notable Imports  Description 
System.Management.Automation Windows .Net class for automation  

System.Windows.Forms Windows .Net class for form creation 

PSCredentialTypes PowerShell credential management 

REQUEST_ADMINISTRATOR Administrator elevation  

FromBase64String Decoding technique 

BeginInvoke Command invocation 

 

  



Sandbox Analysis 
Online sandboxing tool, VirusTotal was used to perform additional preliminary analysis on the binary 

sample. Initially, only the hash was used to search the database. However, the hash search did not result 

in any findings thus the binary was uploaded for further analysis. While uploading binary samples to 

online sandbox tools may result in tipping threat actors off, it was a necessary action to gain more 

information before starting an in-depth analysis.  

The full VirusTotal report is included in the report materials. A summary is presented below. 

Category Result 

Vendor Detection 21/70 

Threat type Generic Malware 

Threat Label Boxter 

File Type Win32 EXE 

External Modules credui, user32.dll, Kernel.dll 

Execution PowerShell, Run PowerShell expression 

Defense Evasion Decode data using Base64 in .NET, Masquerades in user directory 

Persistence  Registry RunKeys 

Privilege 
Escalation 

Registry RunKeys 

Discovery Checks online IP addresses, Reads hosts file, queries processes 

 

Overview Conclusions 
The VirusTotal results are in-line with the results from the earlier file analysis. As such, the binary sample 

is likely a PowerShell script that has been compiled to an executable using the popular module ps2exe. 

Ps2exe uses the windows forms .NET class to create console-less executables. Additionally, the sample 

attempts to maintain persistence through registry edits, attempts to steal information such as IP 

addresses, and includes several evasion techniques.  

Static Analysis 

PEStudio 
Static analysis provides insight into the binary sample without the risk of modifications or detection 

techniques that dynamic analysis poses. However, static analysis does not provide a complete look at the 

behavior and function of the malware. PEStudio was used to start the static analysis of the binary sample 

and is summarized below. 

• PEStudio Results 

o 43 Indicators 

o 588 Functions 

o .NET Namespace 

o 4 Libraries 

The full PEStudio report is included in the report materials. A summary is presented on the next page. 



PeStudio 

Indicator Detail Level 

File > privilege > level Administrator 1 

.NET > namespace > flag System.Security 1 

String > size > suspicious 8812 bytes 2 

Function > group Obfuscation 3 

 

Function Namespace Flagged Group Library 
SecureString System.Security Yes Security mscoree.dll 

CredUIPromptForCredentials - Yes Cryptography credui 

 

The functions imported both deal with security management in Windows. Specifically, they are required 

imports when elevating to administrator privileges. Additionally, the indicators pulled out by PEStudio 

further demonstrate the binary sample has built-in evasion tactics. The file size indicator is notable as 

well, as the executable masquerades as Microsoft Edge (msedge.exe). The file size of the malware does 

not match the expected size of the legitimate msedge.exe file.  

GHIDRA 
Further static analysis was performed with GHIDRA. While GHIDRA was unable to properly disassembly 

the sample, some useful information was obtained through the analysis. Using the type search function 

in GHIDRA, Unicode data was extracted. At location 00408a28, a Base64 encoded Unicode string was 

found. Using decoding tools, the Base64 string was decoded. The output of the decoding process was a 

PowerShell expression that executed an encoded Base64 string. Through further decoding the string 

used in the command, the binary’s code was extracted. All strings are provided in the report materials.  

Code Analysis 
Code analysis began after the code was successfully extracted. The full code is included in the report 

materials. A summary is presented below. 

Parameter Description 
Run Boolean parameter set to True when run as a 

service or on startup 

Elevated Detects admin privileges  

 

Persistence Mechanism Description 

Registry Key creation Registry run keys are created to auto start an 
instance of the malware on device startup 

Service Creation A service is created that launches the malware 
executable with the Run parameter 

 

  



Code Analysis  

Evasion Mechanism Description 

Relocation Malware relocates into the Microsoft Edge 
directory  

Obfuscation Script is encoded in Base64 and decoded on 
execution 

Masquerading Malware runs the legitimate edge executable 
when manually launched  

 

Process Description 

Socket Creation A socket is created using the 
System.Net.Sockets.TcpListener .NET class 

Connection Using the socket, the malware listens on port 
12345 on all local addresses 

Execution When receiving a command, the server executes 
the command and returns the result  

Static Analysis Conclusions 
Through the static analysis process, and the code analysis process, the function of the malware has been 

determined. Firstly, the malware hides itself in the legitimate edge executable location. This is to mask 

the process when investigated. Secondly, the malware creates firewall rules to allow itself network 

access. It then creates a service and run key to establish persistence. When manually launched, the 

malware appears to operate as a legitimate edge process. It calls the edge executable and creates a 

legitimate instance of it. In the background, the malware opens a PowerShell session and begins to listen 

on tcp port 1234. When a command comes in, it executes the command in the PowerShell session and 

returns the output.  

Dynamic Analysis 

Process Monitor 
Moving into dynamic analysis, Process Monitor was used to log the actions the malware took while 

running. The malware initially accesses a set of security related registry keys at 

HKLM\System\CurrentControlSet\Control\WMI\Security. This is likely the first check for administrative 

capabilities. It then begins to import .NET framework files at 

HKLM\SOFTWARE\Microsoft\.NETFramework. It then uses HKLM\SOFTWARE\Microsoft\Cryptography to 

begin the decoding of the expression. During the execution of the malware, the registry hive 

HKLM\SOFTAWRE\Microsoft\.NETFramework\v4.0.30319 is used to manage the server connection. The 

keys used are UseHttpPipeliningAndBufferPooling, HWRPortReuseOnSocketBind, and other connection 

keys. When executing commands, it uses the HKCR\exefile\shell\open\command keys.  

The full Process Monitor log is included in the report materials.  

Wireshark 
Using Wireshark to monitor the TCP stream associated with malware process further demonstrated the 

functionality of the malware. The TCP server created by the malware is unencrypted. Therefore, by 

intercepting or sniffing the packets, the client<->server communications can be intercepted and read in 



plaintext. If the TCP stream is identified, Wireshark can pull all of the commands that were sent from the 

client. Additionally, there is no built-in obfuscation of the client address. This makes it easy to trace the 

client IP and create indicators and signatures to look for.  

The full Wireshark log is included in the report materials.  

Dynamic Analysis Conclusions 
Using the dynamic analysis tools, the full functionality of the malware has been made clear. It is a trojan 

that masquerades as a legitimate Microsoft Edge process. When it’s run, the malware creates a TCP 

server that listens for commands from a client. The commands are then executed and returned to the 

client. This type of reverse shell is often used to exfiltrate secrets from devices.  

Conclusions 

Indicators & Signatures 

Indicator Descriptor 
mssedge.exe The name of the executable 

analyzed 

TCP traffic on port 12345 The port used for the reverse 
shell communications 

PowerShell command execution logs Command execution logs from 
sessions that have not been 
legitimately launched 

HKCU\Software\Microsoft\Windows\CurrentVersion\Run Modifications to the Run keys 

MicrosoftEdgeUpdater service The service created by the 
malware 

 

Remediation Steps 
Remediation is relatively simple for this piece of malware. The following steps are advised.  

Step Command Description 

Stop the 
malicious 

process 

Stop-Process (Get-Process -Name mssedge).ID Stop the server 
process 

Remove the 
Registry 
Run key 

rm 
HKCU:\Software\Microsoft\Windows\CurrentVersion\Run\mssedge 

Remove the 
run key that 
auto starts the 
process 

Remove the 
service  

(Get-WmiObject -Class Win32_Service -Filter 
"Name='MicrosoftEdgeUpdater'").delete() 

Remove the 
service created 
by the malware 

 

 



Appendix 

 

Figure 1 - File analysis output 

 

Figure 2 - FLOSS Result Summary 



 

Figure 3 - PEStudio results 



 

Figure 4 - PEStudio results 



 

Figure 5 - PEStudio results 



 

Figure 6 - GHIDRA Disassembly 

 

Figure 7 - GHIDRA type search results 



 

Figure 8 - Base64 Encoded script block 

 

Figure 9 - Wireshark TCP stream 


	Methodology
	Tools
	Analysis Process

	Binary Overview
	Attack Vector
	File Analysis
	Sandbox Analysis
	Overview Conclusions

	Static Analysis
	PEStudio
	PeStudio
	GHIDRA
	Code Analysis
	Code Analysis
	Static Analysis Conclusions

	Dynamic Analysis
	Process Monitor
	Wireshark
	Dynamic Analysis Conclusions

	Conclusions
	Indicators & Signatures
	Remediation Steps

	Appendix

